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Abstract. We study the effect of coordinate transformations on numerical integration algorithms and the
Richardson extrapolation. Present method is based on Hermitian transformed eigenvalue equations and
symmetrical tridiagonal matrices.

PACS. 03.65.Ge Solutions of wave equations: bound states

1 Introduction

Simple numerical methods based on finite difference com-
monly provide accurate solutions to the Schrödinger
equation. In the case of slowly converging sequences of
single calculations, Richardson extrapolation of several
such runs, each with an appropriate constant steplength,
greatly improves the results. It is well-known that smaller
steplengths are necessary where the potential changes
abruptly, whereas larger steps may appropriately describe
those regions where the potential is smooth. Consequently,
a variable steplength appears to be necessary when the po-
tential exhibits both behaviours. Such methods are more
difficult to program because it is necessary to choose the
steplength according to the behaviour of the potential. In
addition to it, a variable steplength may result in a less
accurate Richardson extrapolation.

An interesting alternative approach is to perform a
change of variable x(r) with inverse r(x), from the original
variable r to the new variable x, that converts a constant
steplength ∆x = h into a variable one ∆r ≈ (dr/dx)h.
In this way, one can apply Richardson extrapolation to
the equation in the variable x, while at the same time
incorporating the advantages of a variable steplength in
the variable r. For example, the logarithmic transfor-
mation r(x) = exp(Kx) has proved suitable for long-
range potentials such as Coulomb interactions [1]. In this
case, we clearly appreciate that the variable steplength
∆r ≈ K exp(Kx)h = Krh, goes to zero at origin (r → 0),
where the potential changes abruptly, and increases as
we move far from it (r → ∞), where the potential is
smoother. However, it is held to be a disadvantage of this
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transformation that it maps the original coordinate in-
terval (0,∞) onto (−∞,∞). In order to remedy this in-
convenience, it is customary to divide the interval of the
variable r into two parts (0, 1) and (1,∞) and to apply
the logarithmic transformation only to the latter, so that
the new variable x ranges from 0 to ∞ [1]. This split re-
quires a more careful programming of the finite difference
method if one does not want to spoil the great velocity of
convergence provided by Richardson extrapolation.

The Euler transformation has proved suitable for the
calculation of critical screening parameters which are par-
ticular values of the potential strength such that a bound
state lies exactly at the rim of the potential well. In this
case the wavefunction tends extremely slowly to a finite
nonzero value at infinity, and the numerical integration
should proceed to considerably large values of the coordi-
nate in order to produce sufficiently accurate results. The
parametrized Euler transformation

r =
Kx

1 − x
(1)

maps the original coordinate interval (0,∞) onto (0, 1)
and makes the integration of the Schrödinger equation
more efficient if one chooses the adjustable parameter K
judiciously [2].

Recently, Killingbeck, Jolicard and Grosjean (KJG)
proposed the alternative change of variable [3]

1 + Kr = exp(Kx) (2)

to solve the Schrödinger equation for the spiked harmonic
oscillator

−d2Ψ

dr2
+

(
r2 + λr−M

)
Ψ = EΨ, M > 0, (3)
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and other similar models by means of a shooting method.
Equation (2) maps the interval (0,∞) onto itself, and be-
comes an identical transformation r ≈ x at sufficiently
small values of x. Both the Euler and KJG transforma-
tions are free from the difficulty outlined above for the
logarithmic transformation. Notice that the KJG trans-
formation is suitable for the behaviour of the potential-
energy function of the spiked oscillator because it
provides a steplength that increases with the variable:
∆r ≈ (1 + Kr)h. We see that ∆r is small at the spiked
tail of the potential close to the origin, and increases as
the propagation of the wavefunction enters the more easily
tractable harmonic-oscillator region. Combining a shoot-
ing algorithm and Richardson extrapolation Killingbeck
et al. obtained considerably more accurate results than
those given earlier by other methods based on smaller
steplengths and more discretization intervals [3]. The au-
thors concluded that sufficiently large values of K made
the algorithm suitable for Richardson extrapolation, and
pointed out that the number of steps N and the steplength
h should be chosen so that ∆r is sufficiently small close to
origin, and not too large at the upper limit of integration.

Killingbeck et al. [3] transformed the variable leaving
the wavefunction unchanged; consequently, their modified
Schrödinger equation is non-Hermitian, and the resulting
discretization matrix nonsymmetrical. In order to exploit
the matrix form of their approach, which has proved suit-
able for shooting methods, one has to resort to special
algorithms for nonsymmetrical matrices.

Motivated by the remarkable results produced by the
KJG transformation, we have decided to rewrite the finite
difference method in the form of a symmetrical matrix to
take advantage of well-known and sufficiently-tested stan-
dard routines for diagonalization. In this way, potential
users of the method may profit from available libraries of
powerful routines for symmetric tridiagonal matrices.

In order to illustrate the effect of the coordinate trans-
formations on the algorithms for numerical integration we
choose several simple quantum-mechanical models with
singular potentials. Such potentials are relevant, for ex-
ample, to interatomic interactions in molecular physics
between an ion and a neutral atom, or between two neu-
tral atoms [4]. We also mention models for phenomena
related to cold fusion [5] and the description of short-
range and long-range interactions in molecular physics and
high-energy scattering [6]. Long-range Coulomb-like effec-
tive potentials are relevant to Hartree-Fock approaches in
atomic and molecular physics [1].

In Section 2 we derive two Hermitian Schrödinger
equations in an arbitrary variable x. In Section 3 we show
how to obtain symmetric matrices in both cases by appro-
priate substitution of finite differences for derivatives. In
Section 4 we calculate the ground-state eigenvalue of the
Schrödinger equation (3) for the most difficult M values
of the spiked oscillator problem and discuss the results.
In Section 5 we choose the exactly solvable Schrödinger
equation with a Coulomb potential in order to test the
performance of the Euler and KJG transformations on
several states of such a long-range potential. In Section 6

we comment on other approaches that have been applied
to the Schrödinger equation with singular potentials. The
main findings of this work are summarized in Section 7.

2 Change of variables

It is sufficient for our purposes to consider the Schrödinger
equation

−d2Ψ

dr2
+ V (r)Ψ = EΨ, (4)

where either r ∈ (0,∞) or r ∈ (−∞,∞) with the bound-
state boundary conditions Ψ(0) = Ψ(∞) = 0 in the former
case and Ψ(−∞) = Ψ(∞) = 0 in the latter. We choose a
one-to-one change of variable x(r) with inverse r(x) such
that dx/dr > 0, and modify the wave function as Φ(x) =
Ψ(r(x))/F (x) so that the resulting differential equation
for Φ(x) is Hermitian. If we require that the scalar product
has the same form for both variables,∫

Ψ2dr =
∫

Ψ2 dr

dx
dx =

∫
Φ2dx, (5)

then we should choose

F (x) =
1√

dr(x)/dx
· (6)

The new wave function satisfies the Sturm-Liouville eigen-
value equation

− d
dx

F 4 d
dx

Φ +
[
V (r(x)) − F 3F ′′ − 2F 2F ′2] Φ = EΦ,

(7)

where primes indicate derivatives with respect to x.
Alternatively, one may modify the wave function as

χ(x) = Ψ(r(x))/G(x), and set G(x) so that no first deriva-
tive appears in the resulting differential equation. It is not
difficult to verify that the appropriate G(x) is just the re-
ciprocal of F (x):

G(x) =

√
dr(x)
dx

, (8)

and that we end with the generalized eigenvalue equation

− d2

dx2
χ +

[
V (r(x))G4 − G′′

G
+ 2

G′2

G2

]
χ = EG4χ. (9)

Given that G4(x) is positive definite, this equation may
be rewritten in an explicit Hermitian form by means of
the Löwdin transformation Φ = G2χ that leads to

− 1
G2

d2

dx2

1
G2

Φ +
[
V (r(x)) − G′′

G5
+ 2

G′2

G6

]
Φ = EΦ. (10)

There is no doubt that equations (7, 10) are equivalent
each other and to the original Schrödinger equation,
although they exhibit different effective potentials and
modified kinetic-energy terms that have been written in
explicit Hermitian form. However, the corresponding ma-
trix equations derived from discretization of those kinetic
terms are not exactly equivalent as we will see below.
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3 Discretization of the transformed equations

The next step is to obtain symmetrical discretized forms
for the kinetic terms, with properties similar to the lowest
order discretization of the second derivative in the stan-
dard Schrödinger equation

1
h2

δ2 = D2 +
h2

12
D4 +

h4

360
D6 +

h6

20160
D8 + · · · , (11)

where D is the derivative operator and δ represents the
centered second difference given by δ2f(x) = f(x − h) −
2f(x) + f(x + h). A relevant feature of equation (11) is
that if we approximate D2 by δ2/~

2, then the error is a for-
mal expansion containing only even powers of h, suitable
for an efficient Richardson extrapolation. This process is
analogous to the extrapolation method in the computa-
tion of integrals by means of the trapezoidal rule, where
the correction is given by the Euler-McLaurin sum rule.

The matrix representation of the operator δ2 is tridi-
agonal

[δ2]ij = −2δij + δi,j+1 + δi+1,j . (12)

Therefore, in order to obtain the matrix representation of
the kinetic-energy term in equation (10) one should multi-
ply the tridiagonal matrix [δ2] by a diagonal one 1/G(x)2,
x = ih, from left and right. We thus obtain the symmetric
representation

[
− 1

G2

d2

dx2

1
G2

]
ij

≈ δij
2

G(ih)4h2

− δi,j+1
1

G(ih)2G((i + 1)h)2h2

− δi+1,j
1

G(jh)2G((j + 1)h)2h2
· (13)

The treatment of equation (7) is somewhat more com-
plicated. One way of deriving an expansion analogous to
equation (11) is to choose an average of two alternative
combinations of forward ∆ = exp(hD) − 1 and backward
∇ = 1 − exp(−hD) difference operators:

[
− d

dx
F 4 d

dx

]
≈ − 1

2h2

[∇F 4∆ + ∆F 4∇]
. (14)

In this way, the error exhibits only even powers of h as it
follows from the fact that equation (14) is an even function
of h.

From the matrix representation of the difference oper-
ators

[∆]ij = −δij + δi+1,j

[∇]ij = δij − δi,j+1, (15)

(note that [∆]T = −[∇]), one obtains the following matrix
representation of the modified kinetic-energy operator
[
− d

dx
F 4 d

dx

]
ij

≈ −δij
F 4((i−1)h)+2F 4(ih)+F 4(i+1)h)

h2

+ δi,j+1
F 4((i + 1)h) + F 4(ih))

2h2

+ δi+1,j
F 4((j + 1)h) + F 4(jh))

2h2
· (16)

To those tridiagonal kinetic-energy matrices one has to
add the diagonal terms that come from the effective po-
tentials of equations (10) or (7). We may then obtain the
desired eigenvalues by means of standard well-established
algorithms for diagonalization of symmetric tridiagonal
matrices.

4 Application to the spiked oscillator
potential

We have carried out a set of calculations on the ground
states of a family of spiked oscillators equation (3) with
λ = 10−4 and M = 1, 3/2, 2, 5/2, 3, 7/2, 4, using the KJG
transformation equation (2) for a wide range of K values.
In all the cases we have chosen a maximum value for the
coordinate r equal to rmax = 10, which proves sufficiently
large for the harmonic oscillator, and therefore also for
the spiked oscillators if λ is small enough (the most in-
teresting and difficult case). The corresponding maximum
value of the new variable xmax decreases with K. For each
value of K the series of calculations starts with 512 inter-
vals for the x variable, and their number is increased by
an arbitrary scaling factor of 3/2 for a total of eight runs,
resulting in a maximum number of steps of 8748. At each
stage, we construct the Richardson extrapolation with all
available previously computed values. The Fortran pro-
gram is set to REAL*16 that ensures a precision of more
that 30 digits. The values of K are uniformly increased by
an arbitrary scaling factor of 8 from 80 = 1 through 820.

Although equations (7, 10) are equivalent, their cor-
responding discretization matrices are not (except in the
limit h → 0), and consequently they give different results
for the straightforward integration. The main cause of this
difference appears to be the abovementioned error series
of even powers of the steplength that is readily removed
by the Richardson extrapolation which brings both results
into almost complete agreement.

At first sight the behaviour of our results in terms of K
can be grouped in three cases: (a) M = 1, (b) M = 3/2
and M = 2, and (c) M ≥ 5/2.

A common feature of all the calculations for cases (a)
and (b) is that the eigenvalues obtained from direct diag-
onalization of the tridiagonal matrices are quite poor, and
their accuracy deteriorates as K increases. On the other
hand, the accuracy of the results for case (c) seems to im-
prove slightly with K. Apparently, our naive idea that it is
the concentration of mesh points in the interesting small-r
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Fig. 1. Number of converged decimal digits Nd as a function
of K, represented in the 8K scale. Diamonds, triangles and
circles correspond to M = 1, M = 2 and M = 3, respectively.

region by means of the transformation that improves the
results is not altogether correct.

The effect of the value of K on the Richardson ex-
trapolants is remarkable. Figure 1 shows the number of
converged digits as a function of K for three represen-
tative cases of type (a), (b) and (c). We assume that a
digit is converged if it does not change when comparing
Richardson extrapolations with n − 1 and n single eval-
uations. We have already tested this assumption on the
exact ground-state eigenvalue E = 2 +

√
1 + 4λ of the

analytically solvable case M = 2.
Figure 1 shows that the best results for case (a) cor-

respond to small values of K, that the accuracy slowly
increases with K in case (b), and that in case (c) the pre-
cision increases sharply at small values of K, reaching a
sort of optimal plateau ranging roughly from K = 86 up
to K = 812, beyond which the accuracy decreases.

To understand those results it is convenient to pay
attention to the relation between the exact eigenvalue
Eexact and the result of a single numerical calculation with
step h E[h]

Eexact = E[h] +
N∑

n=1

Anh2n + RN (h). (17)

In this equation the unknown coefficients An depend on K
but are independent of h, and the remainder RN , which
may be a complicated expression like the Euler-McLaurin
formula, depends on of both K and h. If the remainder
approaches zero sufficiently fast as h decreases, then one
expects the Richardson extrapolation to do an efficient
(often remarkable) job. But this favourable condition does
not mean that the direct numerical integration is good; it
may very well happen that A1, A2, ... have large values,
so that only after eliminating those power-series terms by
the extrapolation one obtains accurate values for the en-
ergy E, even starting from poor values of E[h]. The fact
that the value of K may not improve the straightforward
integration, but that it does have a remarkably positive
effect on the Richardson extrapolation suggests that the

main role of the coordinate transformation is to somehow
diminish the weight of the remainder of equation (17).

Some time ago Jamieson [7] derived an approximate
expression for the remainder RN for the spiked harmonic
oscillator with M = 6. We have been unable to obtain
a similar expression for the transformed equations which
would be most useful to understand more clearly how the
transformations work.

It is worth noticing that although the eigenvalues ob-
tained by straightforward diagonalization of the matrices
with the two discretization methods, based on the func-
tions F (x) and G(x), are quite different, the set of ex-
trapolations are in remarkable agreement. Apparently, the
choice of the function that modifies the eigenfunction has
more effect on the values of the coefficients An than on
the remainder.

To give some examples of those features of the calcu-
lation, in Table 1 we show results of the straightforward
diagonalization and the associated Richardson extrapola-
tions. The impressive performance of the Richardson ex-
trapolation is most noticeable in this table.

The Euler transformation also gives remarkable results
for the eigenvalues of the spiked oscillators, although they
do not appear to be as accurate as those coming from the
KJG transformation.

5 Long-range potentials and excited states

In preceding sections we have seen that both the KJG and
Euler transformations prove suitable for the treatment of
potentials that change abruptly in a small neighborhood of
the origin. Another numerical problem arises in the study
of excited states of a potential well that approaches zero
slowly. In such a case the integration should continue far
from the origin in order to take into account the long tail
of the wavefunction with sufficient accuracy. If one keeps
constant the short steplength necessary to describe the
region where the potential changes appreciably, then the
number of points required to cover the entire region of
meaningful values of the coordinate is enormous. On the
other hand, a long steplength appropriate for the asymp-
totic region will not be fine enough to describe the region
where the potential changes appreciably. Again, a prop-
erly chosen coordinate transformation may prove suitable
for avoiding a variable steplength that would otherwise be
advisable in such important and difficult problems.

The Euler and KJG transformations discussed above
depend on an adjustable parameter K for fine tunning.
It is clear that we should choose K so that dr/dx does
not increase too fast, because otherwise we will have an
extremely large steplength at such great values of r as we
have to include in our calculation. By simple inspection
of the plots dr/dx vs. r for the Euler and KJG transfor-
mations we conclude that the former requires large val-
ues of K whereas the latter requires small values of the
adjustable parameter. The effect of such settings is par-
ticularly noticeable in the case of slightly bounded states
whose wavefunctions have long tails that one has to take
into account to obtain meaningful binding energies.
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Table 1. Results from a single calculation of the eigenvalue and the best Richardson extrapolation as a function of the number
of integration intervals, for the spiked oscillator with M = 1 and K = 1. The underlined digits are not converged.

Intervals Single integration Richardson extrapolation

512 3.00010 64405 96784

768 3.00010 99942 88302 3.00011 28372 41516 40320 95501 39878

1152 3.00011 15736 60519 3.00011 28371 37807 45257 76433 46530

1728 3.00011 22755 94594 3.00011 28371 37807 78142 73473 45496

2592 3.00011 25875 63490 3.00011 28371 37807 78142 60123 07341

3888 3.00011 27262 15976 3.00011 28371 37807 78142 60123 11337

5832 3.00011 27878 39233 3.00011 28371 37807 78142 60123 11058

8748 3.00011 28152 27333 3.00011 28371 37807 78142 60123 11991

At first sight the Euler transformation appears to be
most suitable for those long-range potentials because it
shrinks the coordinate interval from (0,∞) onto (0, 1) thus
bypassing the problem of a too large integration region.
However, as we will shortly see the KJG transformation
also yields remarkably good results.

In order to test the performance of those transforma-
tions on a long-range potential, we choose the exactly solv-
able Schrödinger equation with a Coulomb interaction. It
is sufficient for our present purposes to consider the radial
Hamiltonian operator for s states

H = − d2

dr2
− 1

r
(18)

whose bound states Ψ(r) satisfy Ψ(0) = Ψ(r → ∞) = 0.
Knowledge of the exact energies En = −1/(4n2), n = 1,
2, ... enables us to test our results more easily.

We have carried out several calculations choosing
rmax = 10 000 for the KJG transformation and rmax = ∞
for the Euler transformation. For both transformations
we started with a small number of initial intervals and
successively increased them by a factor 3/2 seven times.
In all the calculations we have resorted to a sequence of
7 Richardson extrapolations ranging from 2 to the maxi-
mum of the resulting 8 single evaluations. We have empir-
ically estimated the degree of convergence by comparing
two consecutive Richardson extrapolations (with n−1 and
n single evaluations). As before, we can test this assump-
tion because we know the exact energies.

Table 2 shows that both transformations give accurate
results with a strikingly small number of mesh points. For
comparison, notice that in order to obtain results of the
same quality for the state n = 8 without a transformation
we have to start with 700 intervals.

6 Other methods

Because of their mathematical and physical importance,
singular potentials in general, and spiked harmonic oscil-
lators in particular, have been treated by many methods.
Those approaches that provide upper and lower bounds
are useful to test the accuracy of more accurate numerical
algorithms [8–10]. Perturbation theory with an appropri-
ate renormalization of the perturbation series (variational

Table 2. Estimated errors in the calculation of the energies of
the Coulomb potential by means of the Euler and KGJ trans-
formations.

n K Transformation Initial Estimated

intervals error

1 2 Euler 16 0

1 KGJ 16 0

4 16 Euler 16 0

1/2 KGJ 16 2 × 10−14

8 128 Euler 16 0

1/4 KGJ 16 1 × 10−11

1/2 KGJ 24 3 × 10−14

16 256 Euler 16 2 × 10−11

256 Euler 24 8 × 10−14

256 Euler 36 0

1/16 KGJ 24 7 × 10−12

1/32 KGJ 36 6 × 10−14

32 1024 Euler 36 2 × 10−13

1/256 KGJ 36 2 × 10−14

perturbation theory) gives accurate eigenvalues [11,12].
The analytic continuation method is both simple and suf-
ficiently accurate for most physical applications [13]. Ex-
pansion of the unknown eigenfunctions of H in a basis
set of eigenfunctions of a properly chosen unperturbed
Hamiltonian H0 leads to a secular equation that one solves
rapidly and accurately with today’s personal comput-
ers [11,14–17]. In this case the addition of convenient non-
linear adjustable parameters greatly improves the veloc-
ity of convergence of the variational method [14–17]. The
Lanczos algorithm has not produced the most accurate
results for spiked harmonic oscillators [18], but one can
in principle improve them as much as desired by enlarge-
ment of the basis set. The representation of the eigenfunc-
tions by means of a B-spline basis set is another standard
method that has yielded remarkably accurate results [19].
There are other numerical integration algorithms in addi-
tion to those discussed above that have also been applied
to the potentials considered here [2,11,12,20].
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The choice of one of the accurate approximate methods
just mentioned is mainly a mater of taste because most
of them give sufficiently accurate results for most physi-
cal applications. We believe that numerical integration is
probably more flexible, than perturbation theory and the
analytic continuation method. The expansion in a basis
set requires the calculation of matrix elements that is far
from being naive in the case of most singular potentials.
The expansion in a B-spline basis set leads to a generalized
eigenvalue equation that one expects to be less efficiently
solved than the much simpler tridiagonal matrix equation
produced by present numerical integration algorithm. For
all these reasons we propose present method as a simple
and accurate way of solving the Schrödinger equation with
a singular potential energy-function.

7 Summary

The main contributions of this paper are:

• a development of discretized symmetric expressions of
the transformed Schrödinger equation for the appli-
cation of standard numerical routines for tridiagonal
matrices;

• high-precision calculations that have enabled us to in-
vestigate the performance of different variable trans-
formations in great detail. Under such conditions we
have disclosed the amazing effect of the KJG trans-
formation on the Richardson extrapolation, commonly
used to improve the results of numerical integration
algorithms;

• we have also shown that the Euler and KJG trans-
formations are most suitable for long-range potentials
as they yield accurate results with a remarkably small
number of mesh points.

Present numerical results suggest that it may prove
fruitful to carry out a rigorous mathematical investiga-
tion of the reasons for the remarkable improvement of
Richardson extrapolation under appropriate coordinate
transformations.

The changes of variable discussed throughout this
paper are suitable when r ∈ [0,∞). We can think of similar

transformations when r ∈ (−∞,∞); for example,

r =
Kx√
1 − x2

, x =
r√

K2 + r2
(19)

that leads to a variable steplength determined by dr/dx =
(K2 + r2)3/2/K2.
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